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NOTATION

Propeller swept area, (1 = x ) A
*n 7 %

Expanded area of propeller blades
- p2

Propeller disk area,
4

21mQn

Propeiler power coefficient, 3
1/2 o A v,

Propeller thrust coefficient, >

1/2 ¢ A Va
Cpi

Cp

Ratio of nonviscous to viscous thrust,

Propeller diameter or maximum diameter of a body of revolution

A4

Speed coefficient,
nD

Length of a body of revolution
Blade section length

Propeller rate of reveclution
Power delivered to propeller, 2mQn

Effective (tow rope) power, R. V

T
Propeller torque
Propeller radius
Total resistance

Propeller thrust R
Thrust-deduction coefficient, (1 - —)
T

Ship speed

Speed of advance

Axial component ot local velocity

iv



Ll |

[}

& e

ja s

Volume mean velocity ratio
Dimensional coordinates
Propeller radius fraction (also nondimensional length)

Number of blades

lx\
Advance angle, tan-l—;*

Hydrodynamic pitch angle (see Figure 5)
Circulation

Section drag-lift ratio

Propeller efficiency in a wake (see Equation [51)

Propulsive coefficient, PE/PD

(1-t)
Hull efficiency, :r;a;‘
a

Ts Yo
Propeller open-water efficiency, Z”Qono
Va
Advance coefficient,
n nD

Additional subscripts

h

i

Propeller hub

Nonviscous

Open water (except Aj and Ro)

Based on ship speed



ABSTRACT

Calculations were performed to determine the efficiency
of integral bow and stern propellers for a body of revolution.
Such a propulsion system leads to propellers with large hubs
relative to the tip diameter and a large number of blades.

The calculations were carried out for a propeller with 13
blades with various tip diameters, blade areas, and rpm's.
The series results are presented, analyzed, and applied to
computing the propulsion performance of a hypothetical 250-
foot tandem propeller submarine.

INTRODUCTION

To provide increased maneuverability at low speed for special pur-
pose submarine designs, the Office of Naval Research has conducted studies
of several new systems. One of these is known as the tandem propeller sub-
marine (TPS).1 This vehicle is controlled and propelled by a propeller
located near the bow and an opposite turning propeller located near the
ster‘n.-yr Variations in blade pitch can be made either collectively or
cyclically {as a function of blade angular position) for each propeller
blade. The propeller -location for this system results in propellers with
relatively large hubs and a large number of blades. This report discusses
a calculation procedure, and results obtained therefrom, for estimating the
propulsion performance of such propellers.

To fulfill the objective of finding optimum propeller efficiency
for large-hub propellers for propelling a submerged body of revolution,
design calculations were performed covering a range of advance ratios and
expanded-area ratios for body-propeller diameter ratios of 0.7 and 0.8. A
submarine form belonging to T™MB Series 58 was chosen for this study. Com—
pared to the present approach of calculating optimum propeller efficiency
for a systematic series, other investigations of TPS propeller performance

2,3 where

have been (1) concerned primarily with estimating vehicle dynamics
the contribution of the propeller to maneuvering and control character-

istics was of prime interest and could be approximated, for the purpose, by

lReferences are listed on page 26.

"U.S. Patent Number 3,101,066,



simple mathematical models of the propeller and (2) concerned with studying
powering performance of a shrouded large-hub propeller system4 in some
detail but making no attempt to optimize the design.

Results of the present series are presented in nondimensional form
as curves of optimum wake~adapted propeller efficiency as a function of the
parameters investigated., To aid the designer, propeller efficiencies as a
function of rpm are presented for a hypothetical 250-foot TPS operating
submerged at a speed of 30 knots.

This work was partially supported by the Office of Naval Research
under Project Order No. P0-3-0094,

STATEMENT OF PROBLEM

The problem is to find the most efficient wake-adapted propeller
for a set of specified conditions. Essentially, the solution of this
problem involves the following: Given an arbitrary inflow at the propeller
disk, find the radial distribution of circulation along a propeiler blade
for minimum energy loss. In this report, the inflow at the propeller is
obtained by determining the potential flow and boundary layer about a pre-
scribed body using the methods of References 5 and 6, respectively. Lerbs!
rigorous induction-factor method7 is used to calculate the velocities at
each blade section for the case of moderately loaded wake-adapted propellers.
The required optimum radial distribution of bound circulation is based on

~

the optimum distribution proposed by Lerbs. >

Propeller performance in a
rcal viscous flow is then calculated using NACA drag data.

Apart from the assumptions and limitations of the vortex theory as
applied to moderately loaded propellers in a potential flow and of the
theory of bounda.r'y'layers6 in a pressure gradient for bodies of revolution,

the principal assumptions used herein are: (1) As applied to the tandem

propeller submarine, mutual interference effects between bow and stern
propellers are not important. This assumption seems justified in the
present investigation since the spacing between propellers is about 6
diameters; (2) In calculating propeller spced=-of-advance, the volume mean
velocity is assumed equal to the effective inflow velocity; (3) Lerbs!

theory can be applied with sufficient accuracy to large~hub propellers; and



(4) The real flow can be divided into a viscous part and a nonviscous
(potential) part. This division is necessary because of the presence of

the boundary layer.
BODY OF REVOLUTION

GEOMETRY OF HYPOTHETICAL TANDEM PROPELLER SURMARINE

A mathematically defined body of revolution® of fineness ratio L/D
= 7.34, belonging to T™B Series 58, was selected as the vehicle for the
design computation of a series of bow and stern wake-adapted propellers.
Table 1 contains the nondimensional offsets to the meridian profile and
other geometrical coefficients for the body. As may be seen in an artist's
drawing, Figure 1, the propeller hubs comprise an integral part of the hull
of a TPS.

After considering the physical properties of a hypothetical TPS for
an example, it was decided to use a 250-foot prototype with propellers at a
bow location of X/L = 0.10 and a stern location of X/L = 0.80. A length of
250 feet gives a reasonable hull diameter of 34 foet for the 7.34 fineness
ratio. This diameter compares to 32 feet for a 275-foot TPS with a fineness
ratio of 8.59 postulated in Reference 3.

Figure 1 - Artist's Concept of Full-Size Tandem Propeller Submarine

(Courtesy of Naval Research Reviews)



TARLE 1

Qffsets and Particulars
for a T™B Series 58

; Hl
y oY/ ix=X/L}]y=1Y/D

'i x X/Li i :
] o.oc | c.0000 :l 0.52 i 0.40:0 i
i 0.02 : 0.1427 I: 0.5 | C.4755 :
0.04 0.2029 , C.56 C.4584 ;
} 9.06 ! 0.2490 :: 0.8 ! C.4503 :
| ©O.o0 { 0.2573 li .60 | 0.4513 |
| oo oo [ e o.aue }
0.3z 1 0.3485 | 0.0 0 0.45C5 ;
[ o.38 | 0373 | 0.0e | c.ae7 |
| o.ie ! 2.3953 " c.o8 | c.408 |
g 08 1 0.4145 Q.70 ! 0.3919 i
too2e 1ooaase oz folaes l
; c.22 : 0.4457 | 0.74 : 0.3605 :
i C.26 | 0.4381 || 0.76 | 0.3429 |
i 0.26 l C.4687 || 0.78 c 0,3239 |
.28 0.4775 1 ¢.80 ! 0.3036 i
l 0.3 I o.4808 | c.s2 | o.am7 |
! 0.32 : 0.4905 ”, 0.84 i 0.2582 i
i 0.3 | 0.4947 “ 0.56 | ¢.2330 !
| 0.3 | 0.4977 i 0.58 I 0.2060 :
i 0.3 | 0.49% 1 0.90 , 0.1771
0.40 © 0.5000 | 0.92 0.1461
I 0.2z ] 0.4995 11 C.94 | C.1131
| 0.4 | 0.4970 Il ¢.06 | o.0778
| o.10 | 04953 “ 0.98 | c.o0401
i 0.5 | oot |l 1.00 1 o.co00
Lo.so ' 0.4878 H |

Serial 4C050060-73

Formula: y2 = alx + azx2 + 33"3 +

ax® 4 a5 4 ax®
4 agk *ag

where:
4y = 1.000
a, =+ 1,137153
a.s = =10,774885
4
aS = ~16.792534
36 =+ 5,0645977

S
wetted Su-face Coefficient = 0.7324
= LD

1CB, x = 0.4456

L/D = 7.339

Note: This method of defining bodies of

|
i
|
!
I
l
|
[
: a, = +19.7842806
|
I
|
|
|
!
! revolution is given in Reference 9

:




VELOCITY PROFILE AT PROPELLER

Propellers of the type and location being investigated experience
inflow velocities that are associated with a real flow. A solution for
these inflow velocities is cbtained by dividing the flow into a viscous
part and a potential part as stated in Assumption 4. Numerical techniques
that utilize a high-speed computer were used to obtain the streamflow and
boundary-layer characteristics. Only a brief description of the methods
used is presented since they are well described in the references.

. . . 6 . .
Concerning the viscous part, Granville has reviewed the subject of

turbulent boundary layers in a pressure gradient and presented a method
for calculating their most important characteristics. Velocity profiles
within the boundary layer as determined by Granville's method, which is
programmed for a high-speed computer at the Model Basin, were used to obtain
the radial distribution of the axial component of the fluid velocity
relative to the body.

Concerning the potential part, a solution for the potential flow

about a body leads to a solution of the Laplace equation10 subject to the
boundary condition that the velocity normal to the body surface be zero.
Methods for solving the direct problem of determining the flow about a
prescribed axisymmetric body have been studied by many investigators, and
recently Smith and Pierce5 programmed a numerical solution for the afore-
mentioned case, The potential due to a surface distribution of sources

and the normal velocity at a point P outside the body, due to this source
distribution, may be written in the form of a Fredholm integral equation of
the second kind. Smith and Pierce used a set of linear algebraic equations
to solve this integral equation.

The effect of the boundary layer on pressure distribution can be
approximately taken into account in potential flow problems. Consideration
of the influence of the boundary layer usually leads to an improvement in
the accuracy of estimating the actual pressure distribution. In accounting
for the difference between actual pressure and potential pressure, a So-
called displacement thickness of the boundary layer is considered as part
of the body. The potential flow calculations in this report were made for

this altered (equivalent) body where the radius r to the surface of an



equivalent body of revolution 1is defined by

r =r +a cosa
W

where r, is the radius eof a budy of revolution,

a’ is the displacement thickness of the boundary layer normal to the

surface of an axisymmetric body, and
¢ 1is the angle of inclination of the body surface to the body axis.

IBM~7090 computer programs have been written for the methods dis-
cussed. Numerical results as obtained from thesc programs are presented in
Figures 2 and 3 where the longitudinal velocity raties VX/V are those seen
by a propeller at bow position X/L = 0.10 and at stern position X/L = 0.80
for hub ratios of 0.7 and 0.8, respectively, The velocity Vx is the axial
component of the local velocity and the radius x is referred to the body
axis. As can be seen from the figures, the velocity at the forward pro-
peller is essentially free-stream velocity except very near the hub for
both body-propeller diameter ratios. Examination of the velocity ratios at
X/L = 0.8 shows that a somewhat higher velocity occurs for 0.7 diameter
ratios than for 0.8 ratios at the same propeller radius fraction.

In this study (see Assumption 2, Statement of Problem), the effective
inflow velocity is taken as the volume mean velocity. This quantity is

defined by the following equation which applies to axisymmetric flow:

1
vv 2 Vx
= —x dx [1
v 1 - x2 Vv )
h X
h

Making use of Simpson's rule, V_ /V was computed from the curves of Figures
2 and 3 and has the following values:

| _
Hub Ratio | Bow, X/L =0,1 | Stern, X/L = 0.8
X, : Ve /v V. /v
0.7 0.995 0.893
0.8 | 0.993 i 0.335
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GEOMETRY OF PROPELLER SERIES

Selection of the several geometric parameters was determined from

the following considerations: Blade Outline - For mathematical convenience

an elliptical expanded-blade outline was chosen. Number of Blades - in

order to be comparable to other postulated TPS propel]er-s,3’4 the number of

blades was taken to be 13 for each propeller. Body-propeller diameter

ratios of 0.7 and 0.8 were selected as being practical;3’4 larger values of

this ratio do not appear acceptable from an efficiency standpoint.

A range of both expandcd-area ratio Ae/A0 (values of 0.4, 0.5, and
0.6) and speed coefficienc is covered by the series calculations. With
regard to the range of Ae/Ao from 0.4 to 0.6, References 3 and 4 use Ae/Ab
= 0.10 for whick value one must assume very deep operation for no cavitation
danger. Since a submarine must submerge and surface, it seems more realistic
to select a more conservative value. It is of interest to note that as the
propeller diameter is decreased the blade chord lengths should increase to
satisfy the same cavitation criteria.

In this study an elliptical blade outline will be assumed (Figure
mM
4) with a portion of the area equal to 0.45-Z~, masked by the hub from Y/M

= 0.3 to ~0.5 and with local blade-section chord length £ equal to 2X.
Nondimensional blade-section lengths £/D are given in terms of the propeller

series parameters by Y

S

i {x,y)
_y |

e

—— AREA MASKED BY HUB

Figure 4 -~ Propeller Blade
Outline

8



A _
e
8675 —= .
, LS 0.8(xex, 2 “
£ 1 -4 ——2° 0.3 (25
D Z(l-xh) (l-xh)

In addition to the nondimensional geometry, the actual propeller
diameters used in the series are:

Hub Ratio Tip Diameter in feet
xh Bow Stern
Propellers | Propellers
0.7 31.2 29.6
0.8 27.2 , 25.8

where, of course, each hub diameter is equal to the hull diameter at each

propeller location.

THEORY AND CALCULATION OF WAKE-ADAPTED PROPELLERS

As stated earlier, Lerbs'7 theory for moderately loaded propellers
considers propellers having finite hub, finite number of blades, and a
radial distribution of bound circulation I' such that I = 0 at x = Xy . His
theory is based on potential flow theory and replaces the propeller blade by
a lifting line. The inflow velocities required for the design of a wake-
adapted propeller are based on the real flow.

Calculations for moderately loaded propellers using Lerbs! induction-
factor method are programmed11 for a high-speed digital computer at the
Model Basin. The problem is to find the optimum radial distribution of 7
hydrodynamic pitch angle B; (see Figure 5) to produce the design thrust of
power. Design calculations for the propeller series developed in the
present study are for a constant thrust of 80,000 pounds and constant ship
speed of 30 knots. For wake-adapted propellers, the local speed-of-advance
at each blade section is different, and because of this, the various co-
efficients are nondimensionalized on ship speed. For the cases considered,

the resulting design thrust coefficients CT based on propeller swept area

S
are:



2
—

Hub Ratio I s
1
T t
| Bow ' Stern
X | Propellers ! Propellers
0.7 [ 0.0806 |  0.0298
0.8 : 0.1500 | 0.1675

In contrast to necessity of determining the corrections to section

12

camber and pitch for a complete propeller design, the theoretically

estimated propeller performance in this study is predicted by simply in-
troducing a viscous drag force as shown in Figure 5. The effect of this
drag force on the nonviscous propeller thrust and power coefficients can be

derived from the geometrical relationships of Figure 3.

T= THRUST

D= DRAG

L= LIFT

Q: TORQUE FORCE ¢
€ : TAND = DRAG-LIFT RATIO ‘ a
i = SUBSCRIPT FOR

NONVISCOUS

Figure 5 - Force Diagram of Viscous Flow at a Blade Section

In terms of drag-1lift ratio ¢ and hydrodynamic pitch angle Bi,the viscous
thrust and power cocfficients CT and CP are 12

S S
1
ac,. .
CTS=f (1 - ¢ tan 8.) — S gx [3]
x + dx
h
1 dc
C r € Psi
Po=] 0+ %) —Fd& (43
JX vailr )-'i QX
h

10



In terms of Equations (3! and i4} and local velocity ratio V_/V, propeller

efficiency nB in the wake=~adapted condition is defined as

'(Vx) dcTsi

D c
Ps

where PD is power delivered to the propeller and the distribution of the
nonviscous thrust and power coefficients is understood to be for the pre-

scribed wake,
The optimum loading distribution = :35 not been rigorously formulated

for wake-adapted propellers, but Lerbs has derived an approximate formula

for the optimum tan B; distribution by assuming a uniform radial distri-

7 R
bution of the thrust-deduction fraction. Lerbs'! distribution®'’™ for tan
B. is (v)l/Z v \1/2
1 N X
A
s\V Vv
\ 6]

1

T

tan

x T

where tan Bs is the tangent of the hydrodynamic pitch angle,

o= Y s the advance coefficient
S mD

V_/V is the effective velocity ratio (see Assumption 2, Statement
of Problem),

Vx/V is the local velocity ratio,

X is the radius fraction, and

ﬂi is the ideal propeller efficiency.

Kramer's curves,12 which were calculated by assuming a range of
values of B and Bi and integrating the differential equations for nonviscous
thrust and power coefficients of free-running propellers, are used to
obtain a first estimate of ﬂi. Equation [6] gives a distribution of tan Bi
based on an effective velocity ratio, taken here as Yv_/v. An iterative
procedure is used to determine the final distribution of tan Bi for an

assumed CT . For the first estimate, the ratio ¢ of nonviscous to viscous
si

i1



ol

thrust coefficient CT /bT = ¢ is estimated from the relations given in the
i
. 12 .
propeller design method of Eckhardt and Mergan and an approximate drag-

lift ratio. These relations may be written

1 , -
C =75 ¢ r. 17)
1
A
_€.
0.003065 A
€ g — 87
Co 22
Vv "
P (93
and A o=V
i T
i

A first estimate of C, based on swept area is determined, from the above
i
procedure, for entering Kramer's curves. It is essential to use swept area

2

since the Kramer curves are for zero propeller hub.  Under some conditions
encountered in the series, a combination of relatively small ) and large
expanded~area ratio results in drag-lift ratios ¢ that are quite large;
e.8., € > 0.5, Equation [7] cannot be used in these cases, and it is
necessary to obtain at least three solutions for nonviscous thrust using a
suitable range of the constant c¢. Propeller thrust in a viscous flow is
coémputed, and the ratio of nonviscous to viscous thrust is found for the
design viscous thrust coefficient. Using the valie of ¢ thus found, a final
calculation is performed.

Lerbs! theory is used to obtain the distribution of nonviscous

thrust coefficient and power coefficient in Equations [3] and [4 1. CT
si
and CP are functions of the circulation, the advance angle 3 and the

51 :
propeller—-induced velocity. Using the estimated data discussed as input,

a numerical solution is obtained from a high~speed computer program.11

wShultzl‘} recalculated Kramer's curves for propellers having finite hubs
for hub ratios up to 0.4. A comparison between the ideal efficiency
obtained for the maximum hub size and number of blades (x = 0.4 and
Z = 6) reported by Shultz revealed excellent agreement with T as obtained
by using swept area and Kramsr's curves for zero hub.

i2



PRESENTATION AND DISCUSSION OF RESULTS OF OPTIMUM PROPELLER SERIES

Figures 6 through 10 give optimun propelier efficiencies EB for the
series as computed from Equations [3), {41, and {5]. The efficiencies are
plotted as a function of speed coefficient J in Figures 6 through & and
cross-plotted as a function of expanded-area ratio Ae/Ao in Figures 9 and
10. As discussed in the previous section, these propeller efficiencies are
for a constant thrust and ship speed. Each graph of Ty versus J is for a
constant A.e/Ao for bow and stern propellers with 0.7 and 0.8 hub ratios.
The cross plots of ﬂB versus Ae/Ao for bow and stern propellers with 0.7
and 0.8 hubs are presented at the J value which gave maximum HB and also
with J as a parameter. Although each set of curves in open-water series
charts shows the complete performance of a single propeller for a range of

J, in contrast each point on the present series of curves represents a

Considering the salient features shown by the curves of Figures 6
through 8, it is seen that there is a J which gives maximum s for each
curve, In general, higher efficiency for both bow and stern propellers is
obtained with 0.7 hub ratios than with 0.8 hub ratios except in the range
J < 1.5, where the efficiency curves for 0.7 and 0.8 hub ratios collapse
into a single curve.

An examination of the cross plots of efficiency EB versus A.e/Ao in
Figure 9 reveals, as would be expected, the decline in iy with increasing
Ae/Ao for 211 conditions. In Figure 10 the comparison of maximum effi-
¢iences EB for bow and stern propellers shows that optimum efficiencies of
the same order of magnitude are obtained with either bow or stern pro-

pellers and that a 0.7 hub ratio results in efficiencies T, about seven

B
points higher than those for a 0.8 hub ratio at all Ae/Ao'

EXAMPLE FOR A TANDEM PROPELLER SUBMARINE

OPTIMUM PROPELLER EFFICIENCY DERIVED FROM SFRIES

The selection of hull form and size for the hypothetical TPS has
been discussed. An estimated 80 x 103 pounds of thrust per propeller were
assumed from existing data for propelling a hull with bridge fairwater at

30 knots. Based on these postulated conditions, curves of optimum

13
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efficiency nB were derived from the series results in the last section and
are plotted as a function of propeller rpm in Figures 11 through 13 for
expaﬁded-area ratios of 0.4, 0.5, and 0.0. Figure 14 shows the variation
of efficiency nB with expanded-area ratio for bow and stern propellers at a
design rpm of 50. This design rpm of 50 was chosen based on information
given in References 1, 3, and 4.

A summary of these results shows: (1) For bow propellers at a
design rpm of 50, 0.8 hub ratio propellers have about a 3 point higher
efficiency than 0.7 hub ratio propellers for all expanded-area ratios in-
vestigated., For stern propellers at 50 rpm, the difference in efficiency
between 0.7 and 0.8 hub ratios is nil. (2) On the basis of operation at
the best rpm, a 0.7 hub ratio is superior for both bow and stern propel=-
lers. Optimum efficiency ﬂB for this case is about 0.76 at an expanded-
area ratio Ae/Ao of 0.4 as compared to Ty~ 0.70 at 50 rpm for A/Aj = 0.4.
(3) For all conditions, efficiency falls off above 50 rpm; however, in this
range of higher revolutions the 0.8 hub ratio is best,

A word of caution is in order with regard to the superiority of 0.8
hub ratio bow propellers at 50 rpm. It can be seen in Figures 11 through
13 that maximum efficiency occurs in this region and that at lower rpm the
efficiency drops rapidly. As mentioned previously, each point on these
curves represents a design condition for an optimum wake-adapted propeller,
and the sudden drop in g under the above conditions is not due to off-
design performance. It should be realized, however, that optimum Tb is

much lower and that off-design efficiency would be even lower.

COMPARISON WITH OTHER PROPULSION TYPES

To properly evaluate the powering performance of a TPS, it should be
compared to conventional single-screw and counterrotating submarine pro-
pulsion, Ultimately, we wish to know the propulsion performance of the
system, propellers plus hull, which may be analyzed by means of the pro-

pulsive coefficient nD and its components." A detailed discussion of nD is

#* . . . .
rPropu131on performance comparisons of different submarine types on a
basis of nD are meaningful if their effective powers PE are the same., In

the present case, all comparisons are for the same resistance shape.
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contained in Reference 14, The propulsive coefficient nD is detfined by

"0

E Rp V

D D 27 H T]13

where P is effective power,
PD is power delivered to propeller,
Ry is hull resistance without propeller,

Q is propeller torque,
is ship speed,
is propeller rate of revolution,

1-t
nH iz hull efficiency, =7 /v and
a

=
[ve)

is propeller efficiency in a wake.

Having obtained U for a TPS, we now consider nH and Ty. It seems
reasonable to assume that < 1 for a bow propeller of a TPS, since the
effective velocity ratio Va/V is essentially unity and a thrust deduction
factor (1-t) < 1 could be expected. For a stern propeller at X/L = 0.8,
the hull efficiency Ty would undoubtedly be less than that obtained with
conventional stern propellers located farther aft where the average wake
would be higher and the thrust deduction would probably be lower for usual
streamline bodies of revolution. For the TPS, an optimum nB of about 0,70
at 50 rpm and Ae/Ao = 0.4 would give a propulsive coefficient T of 0.7 Ty
A conventional submarine propulsion system would yield:

Single-screw: Tp T 0.85

-

. q = 1.32

Considering the foregoing, an optimistic¢ estimate of I for a TPS
can be made as follows: For the bow propeller, let T = 0.70 x 1.0 = 0.70.

For the stern propeller, assume nD equal to the 0.85 for single-screw

23



propulsion, If an mD

a TPS, then the average Ty for both propellers is 0.775. Thus, in regard

of 0.85 could be achieved for the stern propeller of

to the propulsive coefficient it appears that the TPS does not compare
favorably with normal propulsion types.

Fcathering the forward motor for cruising has been Suggested.1 At
a given cruising speed, this doubling the load effect on the stern prepel-
ler results in rather poor off-design performance, and the collective
pitch must be reduced with a consequent lowering of efficiency., From this
standpoint, depending on machinery characteristics, it would be more
efficient to cruise with both bow and stern propellers thrusting. It must
also be remembered that roll stabilization is accomplished by equal and
opposite propeller torque.

CONCLUDING REMARKS

Using Lerbs' theory of moderately loaded propellers with appropriate
viscous corrections, a series of design calculations was performed to
deternine the efficiency of optimum wake-adapted propellers having large
hub ratios, Velocity profiles at bow and stern propeller locations of 0,10
body length and 0.8 body length were derived from boundary layer and
potential flow theory for a body of revolution (minimum resistance form).

For constant thrust and 13 blades, the most importar: effects of
speed coefficient, hub ratio, and expanded-area ratio on optimum propeller
efficiency in a wake may be summarized as follows:

1. In general, for the same expanded-area ratios, higher optimum
propeller efficiencies for both bow and stern propellers are obtained with
Q.7 hub ratio than with 0,8 hub ratio except for J < 1.5, where the
efficiency curves for 0.7 and 0.8 hub ratios collapse intos a single curve.

2. As expected, propeller efficiency declines with increasing ex-
panded=-area ratio.

When the series results are applied tc a hypothetical 250-foot
tandem propeller submarine traveling at 30 knots, the following conclusions
results

1. At a design rpm of 50, bow propellers with 0.8 hub ratio have
about a 3 point higher efficiency than propellers with 0.7 hub ratio.
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2, For stern propelleré at design rpm of 350, the difference in
efficiency between 0.7 and 0.8 hub ratio is nil.

3. An optimum efficiency of about 0.70 is obtainable at 50 rpm and
a 0.4 expanded-are.a ratio for the hypothetical TPS, and approximately 0.76
is obtainable at the best speed coefficient.

For a TPS design rpm of 50, an optimistic estimate of propulsive
coefficient for TPS as compared to that for a conventional propulsion

system shows:

Type : ﬂD

TPS 0.775

Single screwi 0.85
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